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A pulsating sphere, which performs a sequence of virtually impulsive changes in 
its radius with time, is completely surrounded by an inviscid, incompressible 
fluid whose velocity field is generally rotational. This paper indicates how 
it is possible, by means of Helmholtz’s theorem, to relate the corresponding 
vorticity and velocity fields immediately before and after such expansions or 
contractions. 

The method is then applied to the case of a spherical mass of fluid initially in 
uniform rotation in which a spherical core undergoes a single sudden expansion, 
followed after a short interval by an equally rapid contraction back to the 
original radius. An interesting meridional flow is thereby induced, which tends to 
decrease the angular velocity of rotation of the fluid near the poles at the outer 
surface, relative to that of the equatorial fluid. It is perhaps significant that this is 
in qualitative agreement with the variation of angular velocities observed at the 
surface of the sun. 

1. Introduction 
A mass of inviscid, incompressible fluid contains a solid (or possibly fluid) 

sphere, centred about r = 0, whose radius, a(t), varies with time. The sphere is 
said to be pulsating. Suppose from the outset that these pulsations consist of 
expansions and/or contractions which occur almost instantaneously, interspersed 
among intervals during which the radius remains constant. This restriction is 
hardly a severe one, for any time-history can be approximated by a suitably 
chosen series of such ‘jumps ’. The sphere radius can be written as 

(1) 1 a = a, when to < t < t,, 

a = a, when t, < t < tnC1, etc. 

Assume also that the surrounding fluid does not cavitate during the sudden 
motions. 

The velocity field, v(r, t ) ,  and hence the vorticity field, w = curl v, is arbitrarily 
specified throughout this fluid at some particular time. If the fluid is of infinite 
extent, it is desirable that w should approach a constant w, sufficiently 
rapidly as r --f co, so that a vector potential 

... . . . . . . . . . . . . . . . 
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can exist. If it is bounded, then n .v should vanish at the surfaces, except during 
the sudden changes in the radius of the sphere, when the boundaries would 
adjust to keep the fluid volume constant. 

v(r) is generally not steady, even in the absence of any motion by the sphere. 
However, its behaviour during the quiescent intervals can at least in principle 
be calculated by standard methods, and daes not therefore concern us here; only 
what happens to v and w as a result of the quasi-impulsive changes in radius 
appears to be in question. It will now be shown how the values of v and w just 
following an expansion are related to those that existed immediately before. 

2. Effect on the vorticity field of a sudden expansion 
Consider a sudden increase in the radius of the sphere from a, to a, which occurs 

at time t,. Take any two infinitesimally separated fluid particles lying outside the 
sphere, say those at P and Q ,  which at t,- are joined by a particular vortex 
filament Q (see figure 1). Clearly, the expansion displaces them outwards to 
positions P‘ and Q‘ respectively. PP’ and QQ’ may be called the ‘drifts’ of these 
particles caused by the expansion. 

FIGURE 1. Positions of a typical vortex filament immediately before 
and after an expansion of the sphere. 

Since the expansion takes place in virtually an instant, the velocities associated 
with it must be immensely larger than the original velocities of the fluid. It 
follows that the ‘drifts ’ are just the same as if the body had instead expanded less 
rapidly into an initially stationary fluid. The instantaneous displacements of the 
fluid particles are radial and they will obey the increase-of-volume condition: 

8-4 = a:-ai = A: = const. (2) 
Helmholtz’s theorem states that vortex filaments move with the fluid. There 

is no reason to suspect an exception in the present case, for it has been assumed 
that the expansion, though fast, is not quite instantaneous. P’ and Q‘ are there- 
fore on the same vortex line, Q‘. Referring again to figure 1, the sudden expansion 
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of the sphere has thus the following effect on the components of vorticity, which 
are proportional to the infinitesimal distance increments : 

The radial component is decreased by the ratio dr,/dro = r:/r:; whereas the 
lateral components are increased r,dP/roda = rl/ro times. Or, in spherical polar 
co-ordinates (r = radius; 8 = co-latitude; q5 = longitude), 

the unprimed w’s being the components of w(t, - ). 
It does not appear possible to relate the before-and-after components of 

velocity quite so directly. Though v(tl + ) is strictly determinate from w(t, + ) and 
the boundary conditions,-f it will generally have to be calculated by means of the 
vector potential. There is, however, one case where the transformation is simpli- 
fied and that is when the component of velocity tangential to the circles r and 
8 constant, i.e. v+, is independent of the angle q5. Then it is easy to prove, since 
such rings at t = t ,  - have been shifted into larger circles by the time t, -+ , and 
since the circulation theorem is obeyed, that 

v(t,+) = w;; w;; w; = -w$ . ( ro rl 1 (4) 

Equations (3) and (4) apply of course without change to a contraction by the 
sphere; only then rl < ro. 

3. Uniformly rotating fluid 

simple example. Take the original flow to be one of uniform rotation, that is, 
Let us now apply the considerations of the previous section to a relatively 

v ( t  < t,) = two x ro = (0; 0 ;  ~worosin8}, 

w(t < t l )  = (wocos8; -wosin6; O},  

w(tl + ) = (wo(ro/rl)z cos 6 ;  - wo(rl/ro) sin 6;  O}. 

(5) 

(6) 

(7) 

the vorticity for t < t ,  is 

from which equation (3) gives immediately 

This happens to be the kind of special case in which equation (4) applies; thus we 
know vi immediately. Now it is quickly seen that v& itself already possesses the 
vorticity given by equation (7) required of the velocity field. Hence, as long as the 
normal velocity at the sphere surface is zero, it  follows that 

v ( t l + )  = (0; 0; ~wor,(ro/r,j~sin8}. ’ (8) 

Let us examine the effect of these velocities upon the vortex filaments over 
a short interval of time, At, after t,. For the fluid to continue rotating rigidly, v6 
would have to equal V$fi[3id = *wor,sin8. But this is not the case here, for 
v+ < v$rigid. In  fact, all particles, particularly those in the vicinity of the sphere, 
will increasingly ‘lag ’ behind their would-be positions of uniform rotation as time 
goes on, and the vortex lines consequently suffer a certain distortion. This is 
illustrated in figure 2. 

t If the fluid extends to infinity, the boundary condition v(ro; t,- ) =v(rl; t,+ ) applies 
there. 
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Note that since v.  w = 0 at t, + the motion cannot in the first instance stretch 
the vortex lines in the direction of w(t, + ). Rather, any stretching that does occur 
gives rise to a lateral component of vorticity, Awi. At t, + At, one can therefore 
separate the vorticity field into aprimary Jield, w*, which in the first approxima- 
tion is unchanged from w at t = t, + , and a secondary or induced JieZd, Aw', 
composed of vortex rings that are concentric with the axis of symmetry. The 

Vorrex filament 
A surface which was 

the expansion 

Position which filarnenr 

FIIXJ-RE 2. The distortion of a typical vortex filament during a short interval 
after an expansion. 

intensity of the latter grows very nearly linearly with time, and it is anti- 
symmetric about the equatorial plane. These rings of vorticity represent a 
meridional flow directed inwards near the equatorial plane, and outwards near 
the axis. 

Suppose now, further, that at  t = t, + At = t, the sphere undergoes a rapid 
contraction back to the original radius a,. Reversing the previous procedure, we 
see that the primary vorticity field transforms back to the constant w, which 
existed before t,. However, the contraction cannot cause the vanishing of the 
secondary vorticity, which sprang up during the interval At. In  other words, the 
expansion-contraction cycle of the sphere (i,e. the single pulsation) leaves as an 
immediate after-effect a vortex field Aw"(r,, S) = (ro/rl) Aw'(rl, S), together with 
its associated flow in the originally uniformly rotating fluid, and the motion is 
not steady any more. 

This secondary vorticity field, Aw", can be calculated from the distortion of the 
vortex lines at  t ,  + . If g represents the 'lag ' of fluid particles at  that time behind 
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the positions which they would have reached in the absence of the pulsation, 

a9 
aZ,  

then 
Aw: = -w,-  (9) 

z being measured along the axis of rotation. Now g equals (ro/rl)  times At 
multiplied by the velocity deficiency during the expanded phase, which is 
Qworl[l - (ro/rl)2] sin 0. Differentiating, one finds that 

where 3 = $+A!. 
$ A!. This means that 

the solutions are not going to be accurate for small radii, but, fortunately, this is 
unimportant. In  this case equation (10) can be written in the expanded form 

It can then be established that 

Aw; = +A!wiAt(ri/r!) sin 28, (10) 

In  trying to find velocities to match Awi, assume that 

Awi g A: wi At rCS sin 20 [ 1 - $ ( A J T , ) ~  + . . .]. 

qr(t ,+)  g &4:w8AtrC2[1 +Q(Al/ro)3] [cos20-+] 

(11) 

P a )  

and qe(tz + ) g &A!wgAt rg6 sin 28 (12b)  
are divergence-free and consistent with (1 1). Together with a potential-derived 
velocity field, which will be chosen to satisfy the boundary conditions (if any), 
(12a) and (12 b)  describe the induced flow immediately after a single pulsation. 

4. Sphere of rotating fluid with a pulsating core 
An interesting situation arises when the pulsating sphere is at the centre of 

a rotating mass of fluid which itself is spherical. In  this case, there are two 
boundary conditions at t 2 + .  The normal velocity must vanish at the outer 
boundary, where r = b, say, and perhaps at the core where r = a,. However, it  is 
reasonable to disregard the latter, for the resulting irrotational velocities would 
drop off with distance as rapidly as To4, and if the core were fluid, such a condition 
would be unrealistic anyway. To be accurate, we assume that at < b3. 

The boundary condition at r = b is satisfied by our superimposing upon the q's 
the velocities derived from the potential $ = Krt[cos2 8 - 31. The constant K is 
determined from - ( - a+/aro)ro=b = q,(b), thelatter being given byequation (12a). 
The resulting complete induced flow in the meridional planes immediately after 
the re-contraction, except near the centre, is very nearly 

v&+) 2 &4:wgAtr{'[1 -(ro/b)3] [cos20-#] ( 1 3 4  

and ve(t2 + ) g $AjwiAtr,b-3 sin 20. (13b)  
Higher-order terms have been omitted from these equations. 

Now it must be emphasized that these velocities are transient, for they will 
gradually distort the primary vortex filaments with resulting complications to 
the flow, which we cannot consider here. Moreover, in a real fluid viscosity will at 
the same time tend to destroy meridional motions and to restore the entire sphere 
to uniform rotation (assuming that the surface at r = b is frictionless) with the 
initial angular velocity. 

But neither of these effects is likely to contradict our conclusion that one of the 
effects of an expansion-contraction of the sphere within the sphere of rotating 



576 Alar Toomre 

fluid is a flow along the surface from both poles towards the equator. In  fact, we 
might go one step further and postulate that the core pulsates periodically, ex- 
panding and then contracting, perhaps with sufficient quiescent intervals between 
a contraction and the next expansion to permit what viscosity there may exist to 
restore the rotation to nearly uniform. In  this case, a one-way surface flow away 
from the poles will be present throughout, though it will fluctuate in intensity. 

It is possible to show that such a meridional flow along the surface cannot help 
but exercise a perhaps disproportionate effect upon the main peripheral velocities 
there, namely, the vd's. Consider any ring of constant latitude fluid on this sphere 
at some given time. It has a certain circulation, say r. If we now assume negli- 
gible viscosity, as the meridional velocities displace this ring of fluid towards the 
equator and its radius increases, I' remains constant owing to the circulation 
theorem. Therefore the peripheral velocities, vd, along it are decreased. By such 
arguments, if carried to the limit, it would follow that the fluid at  the poles would 
cease revolving altogether ! In  reality, the situation will not be so drastic, but 
clearly if we start with a sphere rotating uniformly with the angular velocity iw, 
and superimpose meridional velocities such as we have described upon it, the 
angular velocity a t  the poles will soon be less than Bw,. 

At the low latitudes, however, fluid rings increase less in radius, and because 
particles on the surface must remain there, a similar reasoning would reveal that 
the rotational speed is unaltered at the equator. One would expect the combined 
trend to be held in check, both by higher-order effects here neglected, and by the 
action of viscosity. Nevertheless, qualitatively, the regular pulsation of the core 
will have an effect whereby fluid at increasing latitudes will have a progressively 
smaller angular velocity, and thus take longer to complete a rotation. 

This remarkable effect has been observed on the sun. Whereas its equatorial 
(sidereal) period of rotation has been measured at  about 25 days, this period is 
known to grow with latitude, reaching about 39 days a t  the 60" latitude. This 
phenomenon seems to have remained virtually unexplained. 

There is one aspect of a typical pulsation which has been taken rather for 
granted so far. We have really only considered pulsations where the core expands 
and then contracts, followed and preceded by periods of quiescence. It should be 
noted that if the behaviour were the reverse-that is, the core first contracting, 
then expanding-our deductions, too, would be exactly the opposite, and in the 
case of the spherical mass of fluid surface currents would be directed towards the 
poles. That its attendant effects are not evidenced in the sun's rotation suggests, 
according to this theory, that the hypothetical pulsations of its core are of an 
explosive, and not an implosive, nature. 

An apologia is perhaps due for citing as a possible example the sun, which 
hardly consists of incompressible fluid. However, the reasons for restricting direct 
analysis to such fluids are obvious; and so are those for idealizing the pulsations 
as quasi-impulsive. It is reasonable to suppose that the qualitative conclusions 
are valid no matter whether the fluid is incompressibIe or not. Finally, we 
may observe that expanding spherical shock-waves have an effect somewhat 
analogous to the expansions-contractions of a core; both displace fluid tem- 
porarily outwards to an extent varying with distance from the centre. 


